Design of FeBi nanoparticles for imaging applications.

نویسندگان

  • M Branca
  • F Pelletier
  • B Cottin
  • D Ciuculescu
  • C-C Lin
  • R Serra
  • J-G Mattei
  • M-J Casanove
  • R Tan
  • M Respaud
  • C Amiens
چکیده

A variety of imaging technologies are now routinely used in the medical field, their use being continuously enlarged through the development of contrast agents. Recently nanoparticles (NPs) proved efficient to improve imaging in vivo by increasing contrast and targeting capabilities. The current trend is now focused on the development of dual contrast agents combining two or more functionalities on the same NP. Motivated by this new challenge we developed FeBi NPs as new nanomaterials with potential application as a contrast agent for MRI and CT imaging. In addition to the well-known use of iron in the development MRI contrast agents, we chose Bi as a CT imaging agent rather than the more documented gold, because it possesses a larger X-ray attenuation coefficient and is much less expensive. Two sets of NPs, with sizes around 150 nm and 14 nm, were synthesized using organometallic approaches. In both cases, the NPs are spherical, and contain distinct domains of Fe and Bi, with the surface being enriched with Fe, and a hydrophobic coating. This coating differs from one sample to the other: the surfaces of the 150 nm large NPs are coated by amine ligands, while those of the 14 nm large NPs are coated by a mixture of an amine and its hydrochloride salt. Exchange of the surface ligands to afford water soluble NPs has been attempted. We show that only the larger NPs could be functionalized with water soluble ligands, which is in agreement with the lability of their initial surface coating. Colloidal aqueous solutions of FeBi NPs with glycoPEG ligands have been obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of gold nanoparticles for medical imaging

Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...

متن کامل

Core/Shell structured nanoparticles for imaging and therapy

Introduction: Nanoparticles have several exciting applications in various fields of biomedicine. It has been found that among different classes of nanoparticles core/shell is most promising for field of nano-medical imaging and therapy due to their distinct advantages. The core/shell type nanoparticles can be generally comprising of two nanoparticles one act as a core (inner ma...

متن کامل

Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review

Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...

متن کامل

Multifunctional GQDs-Coated Fe/Bi Nanohybrids for CT/MR Dual Imaging and in vitro Photothermal Therapy

Introduction: The multipurpose nanocomposites have gained growing biomedical attention as promising nanotheranostics to improve The effectiveness of cancer treatment, which concurrently combine advantages of the therapeutic and diagnostic techniques into one nanosystem. The “all-in on” probes not only help to ablate cancerous tumors, but also allow to optimize and monitoring of...

متن کامل

The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent

Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2014